Assimilation of all-sky IR radiances of Himawari-8/AHI and reflectivities of GRM-Core/DPR

Kozo Okamoto

JMA/MRI,
Visiting scientist of ESSIC

*JMA(Japan Meteorological Agency), MRI(Meteorological Research Institute)

JCSDA-EMC seminar, 8 March 2016, NCWCP, College Park, US

Content

- 0. Background
- 1. Preparation for all-sky IR radiance assimilation
 - Himawari-8/AHI
 - Model comparison
 - AHI obs and JMA-NHM with RTTOV
 - Compare RTTOV and CRTM
 - (Cloud effect parameter)
- 2. Assimilation of DPR reflectivity profiles
 - GPM-Core/DPR
 - Model comparison
 - Assimilation experiment for TC Halong in 2014

0. Background

- Various satellite data have been assimilated to generate accurate initial states of Numerical Weather Prediction (NWP)
- However, cloud/rain-affected data have been underused
- All-sky IR radiances
 - Mostly assimilated in clear-sky condition, and in overcast conditions at ECMWF
 - All-sky MW radiances have been (will be) assimilated in some operational centers
 - High temporal/spatial information, high sensitivity to clouds
- Space-based precipitation radars
 - Not assimilated in any operational centers
 - JMA is preparing for assimilating RH retrievals
 - Complement ground based radars and space-based passive sensors

1. Preparation for all-sky IR radiance assimilation

- Aim to assimilate IR radiances in general cloud conditions (multilayer, partial, thin and thick,,)
- As the first step, investigate the reproducibility of our model

Himawari-8/AHI: geo-sat after MTSAT2

- Launched in Oct. 7 2014
 - Start the operation in Jul. 7, 2015
 - Himawari-9 to be launched in 2016
- Advanced Himawari Imager (AHI)
 - 1.0/0.5 km for VIS and NIR, 2.0 km for IR and NIR
 - 10 min. for full disk, 2.5 & 0.5 min for Japan regions and target regions (1000x1000km, 1000x500km)
 - 16 band (3 VIS, 3 NIR, 3 WV, 1 CO2)
- Note:
 - Parallel dissemination of AMV and CSR from MTSAT2 will be discontinued in Mar. 24, 2016 http://www.wmo.int/pages/prog/sat/meetings/documen ts/IPET-SUP-2 Doc 06-02 Himawari8-JMA-rev.pdf

Himawari-8,9/AHI					
Band	Wavelength [µm]	Spatial Resolution			
1	0.43 - 0.48	1km			
2	0.50 - 0.52	1km			
3	0.63 - 0.66	0.5km			
4	0.85 - 0.87	1km			
5	1.60 - 1.62	2km			
6	2.25 - 2.27	2km			
7	3.74 - 3.96	2km			
8	6.06 - 6.43	2km			
9	6.89 - 7.01	2km			
10	7.26 - 7.43	2km			
11	8.44 - 8.76	2km			
12	9.54 - 9.72	2km			
13	10.3 - 10.6	2km			
14	11.1- 11.3	2km			
15	12.2 - 12.5	2km			
16	13.2 - 13.4	2km			

Model and Radiative Transfer Model (RTM)

- Model : JMA-NHM (Non-hydrostatic model)
 - Operational meso-scale model of JMA since 2004 (Saito et al. 2006)
 - Cloud microphysics
 - Explicit three-ice bulk scheme based on Lin et al. (1983)

	Cloud water	Cloud ice	Rain	Snow	Graupel
Mix.ratio	Qc	Qi	Qr	Qs	Qg
Num.denstiy		Ni			
DSD	Mono-disperse		Exponential		

RTM

- RTTOV v11.3
 - □ Cloud scattering (Matricaldi 2005): scaling approximation (Fu et al. 1999), cloud fraction by stream method
 - Cloud input: fraction, 5-classified water (convective/stratiform, maritime/continental), ice
- CRTM v2.2.3 (Thanks to Dr. Paul van Delst)
 - Cloud scattering: ADA method (Liu and Weng 2006)
 - Cloud input: content and effective radius of hydrometeors users specify

Comparison of AHI obs and simulation

7/4

- Model (JMA-NHM)
 - 5km, L50, 461x481 grids, Japan region
 - 6-h forecast, initialized at 00 UTC Sep 7~ 18 UTC Sep 9, 2015, every 6-h
- Obs: AHI IR radiance
 - Super-obbed (2x2 pixels average) and thinned in 20 km box (4 model grids)
 - Removed when standard deviation (SD) in super-ob at band 13 > 2.0 K (inhomogeneity-QC)
 - □ Intend to remove high inhomogeneous scenes
 → Justify IR super-ob and cloud fraction=1.0 in RTTOV
 - □ SD is estimated from original pixels inside super-ob
 - No OB-FG screening applied
 - Scatter/PDF plots are made from samples accumulated every 6-h (not every 10-min/2.5-min!) over sea
 - □ Data number : 116,229
- RTTOV
 - Cloud fraction = 1.0, set "maritime stratus cloud"
- CRTM
 - ODPS algorithm, sea surface emissivity using Nalli coefficients
 - New AHI coefficients (courtesy of Dr. Yong Chen)

OB: Sep 7 ~ 9, 2015

Example of OB, FG, OB-FG with RTTOV

- 06 UTC Sep 9, 2015
- Use RTTOV

After removing data with SD>2.0K

- Data number : 12,817 → 10,803
- More data should be removed?

OB, FG, and OB-FG with RTTOV

Disagreement between OB and FG

- Low BT at window band is not sufficiently simulated
- Positive OB-FG at humidity band → BT depression due to humidity is overestimated
- From the comparison with global ECMWF-IASI statistics (Okamoto et al. 2014, QJRMS), the regional JMA-AHI statistics shows
 - Larger variability of OB-FG
 - More significant negative OB-FG
- Causes: Deficiency of model, RTM and QC and predictability of high-res system
- What difference does other RTMs make?
 - Help to investigate causes and characterize the disagreement

RTTOV and CRTM (band13:10.4 µm)

RTTOV and CRTM (band13:10.4 µm)

cloud sensitivity of CRTM: FG

MR: mixing ratio, Re: effective radius

125E

cloud sensitivity of CRTM: OB-FG

RTTOV and CRTM (band8: 6.2µm)

- CRTM BT is slightly higher in moisture inflow region, probably due to weaker absorption
- → Alleviate positive OB-FG

RTTOV and CRTM (band8: 6.2µm)

RTTOV and CRTM comparison: summary

- CRTM simulates (reasonably) weaker humidity absorption than RTTOV
- CRTM simulates lower BT than RTTOV
 - BT depression is mostly associated with snow (mixing ratio)
 - However, CRTM generates excessively low BT in some clouds
 - □ → OB-FG variability is larger : SD=13.50K (RTTOV), 14.38K (CRTM)
- Possible explanation of excessively low BT in CRTM
 - CRTM overestimates cloud scattering, and/or
 - JMA-NHM overestimates snow (see DPR CFAD in the 2nd part of my talk)
 - The underestimation of RTTOV scattering may offset model's snow overestimation
 - I would like to know results of other comparison study and verification

Summary and plans of preparation for all-sky IR rad assimilation

- To assimilate all-sky IR rad of Himawari/AHI, obs is compared with simulation using JMA-NHM with RTTOV & CRTM
- Cloudy radiances are overall reproduced but the large variability and negative bias of OB-FG is significant
- RTTOV/CRTM comparison helps to investigate the cause of and characterizing the disagreement between OB and FG.

Ongoing

- Improve a cloud effect parameter to develop cloud-dependent QC and observor assignment (and bias correction)
 - See my talk in ECMWF-JCSDA cloud/precip-workshop in Dec. 2015
 - Need to remove extreme outliers based on characterized disagreement.

Plans

- Continue the comparison study for different weather situations
- Assimilate all-sky IR using regional and global DA system

2. DPR reflectivity assimilation

GPM-Core/DPR

- GPM (Global Precipitation Mission)-Core satellite
 - GPM is a joint mission between NASA and JAXA
 - Launched on 28 Feb 2014
 - 2 instruments : DPR and GMI (GPM Microwave Imager)
- DPR (Dual-frequency Precipitation Radar)
 - KuPR and KaPR
- Use 2 DPR data in this study
 - KuNS: KuPR normal scan mode
 - □ 13.6 GHz, Res: 5.2 km (H) & 125 m (V)
 - □ Swath: 250 km
 - KaHS: KaPR high sensitivity mode
 - □ 35.55 GHz, Res: 5.2 km (H) & 250 m (V)
 - Swath : 125 km
 - Available on JAXA G-Portal : https://www.gportal.jaxa.jp/gp/top.html

http://www.eorc.jaxa.jp/GPM/index_e.htm

Model and radar simulator

- Model : JMA-NHM
 - Operational meso-scale model of JMA since 2004 (Saito et al. 2006)
 - Cloud microphysics

	Cloud water	Cloud ice	Rain	Snow	Graupel
Mix.ratio	Qc	Qi	Qr	Qs	Qg
Num.denstiy		Ni		Ns	Ng
DSD	Mono-disperse		Exponential		

- Simulator : Joint-simulator (Hashino et al. 2013)
 - Developed by JAXA EarthCARE mission and Japanese research community
 - Inherited from Satellite Data Simulator Unit (SDSU; Masunaga et al. 2010) and NASA Goddard SDSU
 - Multi-satellite sensor simulator utilizing cloud microphysical parameters consistent with input cloud-resolving model
 - Calculate reflectivity factor (Ze) based on Masunaga & Kummerow (2005), using optical parameters retrieved from Look-up-table

$$Z = \frac{\lambda^4}{\pi^5 |K|^2} \overline{\sigma}_b \exp \left[-2 \int_0^r \overline{k}_{\text{ext}}(r') dr' \right]$$

Comparison of DPR obs and JMA-NHM simulation

- Target : Typhoon T1411 (Halong)
- Model : JMA-NHM
 - 12-h forecast from 00 UTC 31 July, 2014
 - 5 km res., 401x401 grids, 50 layers up to 21.8km
- GPM-Core/DPR:
 - 2ADPR (KuNS and KaHS), attenuation-corrected reflectivity factor (Ze)
- Remove data with Ze<14 dBZ and contaminated by ground clutters</p>

CFAD (Contoured Frequency by Altitude Diagram)

Number density as a function of diameter & height for OB and FG

DSD:

- OB: gamma
- FG: Inverse-exponential (rain,snow,graupel) and monodisperse (cloud water,cloud ice)
- Large hydrometeors populations
 - OB: gradually reduces above 5 km
 - FG: nenarly stay constant below
 12 km and reduces above 12 km

-0.5 0 0.5 log10(D) [mm]

1.5

log10(D) [mm]

-0.5 0 0.5 log10(D) [mm]

Assimilation scheme

- EnVA: Ensemble-based Variational scheme (Aonashi and Eito 2011)
 - Minimize a cost function in ensemble forecast error subspace (Lorenc 2003)

$$J(x) = J(\Omega) = \left(x - \overline{x^f}\right)^T \mathbf{P}^{-\mathbf{f}} \left(x - \overline{x^f}\right) + (y - H(x))^T \mathbf{R}^{-\mathbf{1}} (y - H(x))$$

$$x - \overline{x^f} = P_e^{f/2} \circ \Omega \qquad P_e^{f/2} = \left(x_1^f - \overline{x^f}, x_2^f - \overline{x^f}, \dots, x_N^f - \overline{x^f}\right)$$

$$\mathbf{P}^{\mathbf{f}} = \mathbf{P}_e^{\mathbf{f}} \circ \mathbf{S} : \mathbf{S} \text{ spatial localization}$$

- Improve EnVA to reduce sampling errors (Aonashi et al. 2016, submitted to MWR)
 - Neighboring Ensemble (NE) approach based on spectral localization (Buehner and Charron, 2007) in addition to an adaptive spatial localization
 - Dual scale analysis variables dependent on horizontal scale
 - Large-scale variables (x_L) : U,V, Ps, potential temperature, RHW2 (=(Qw+Qi+Qc)/Qsat)
 - \square Small-scale variables (x_S): W, Pr (sum of flux of rain, snow and graupel) and anomaly from spatial averaged x_L

DPR pre-processings

- QC (Quality Control) removes data
 - At and above melting layer,
 - Contaminated by ground clutter,
 - Over land,
 - Having no rain signals in both OB and FG (Ze<14dBZ), or
 - Having large OB-FG
- Super-ob: average observation within two horizontal and vertical grids
 - GMI also averaged within 25x25 km
- Observation error = 4dBZ(KuNS), 3dBZ(KaHS)

Assimilation experiments

- Implement 6 non-cycle assimilation experiments
- Observation
 - 2ADPR (NS and HS) attenuation-corrected Ze
 - GMI radiance at 10V, 19V, 23V, 37V and 89V channels
 - Conventional data (bogus winds)

Exp Name	GMI	KuPR (KuNS)	KaPR (KaHS)	conven tional
1.Kuonly		0		0
2.Kaonly			0	0
3.GMIonly	0			0
4.GMI+Ku	0	0		0
5.GMI+Ka	0		0	0
6.GMI+KuKa	0	0	0	0

- Observation operator
 - Radar simulator : Joint-simulator (Hashino et al. 2013) for Ze
 - RTM: Liu (2004) for radiances
- Assimilation system
 - 5km, 401x401grids, 50-layer, 52 members

Example of assimilation result: Kuonly exp.

KuNS Ze cross section (H=2.5km & Angle.bin=26)

Analysis increment for 3 experiments (at 2.5km)

Analysis verification FG-OB & AN-OB

	GMI	KuPR	KaPR
1.Kuonly		0	
3.GMIonly	0		
4.GMI+Ku	0	0	

Analysis verification Mean FG-OB & AN-OB

Forecast verification: intensity

DPR (and GMI) assimilation cannot predict the rapid intensification of Halong

Forecast verification: Center positon

- DPR assimilation yields small errors in the very short-range forecast
- DPR + GMI reduces position errors over the entire forecast range

Summary of DPR reflectivity assimilation

- Comparison of GPM-core/DPR with model simulation
 - JMA-NHM overestimates Ze from snow
- Assimilate DPR Ze and evaluate analysis and forecast
 - Included Joint-simulator in an ensemble-based variational (EnVA) scheme and developed QC procedures for DPR Ze
 - Assimilating both DPR Ze and GMI radiances most improve analysis and typhoon track forecast
- What we <u>learned about DPR assimilation is</u>
 - Impact of DPR is limited due to narrow swath, sensitivity to restricted analysis variables and conservative QC (removing ice region)
 - Synergetic use with MWI and background covariance structure are important for effective use of DPR

Plans

- Cycle experiment, More cases
- Improve use of KaPR by better handling ice scattering Ze (e.g. BC?)

Thank you for your attention!

References

- Okamoto, K., K. Aonashi, T. Kubota and T. Tashima, 2016: Experimental assimilation of the GPM-Core DPR reflectivity profiles for Typhoon Halong in 2014. *Mon. Weather Rev., in revision.*
- Okamoto, K., T. McNally and W. Bell, 2014: Progress towards the assimilation of all-sky infrared radiances: an evaluation of cloud effects. Quart. J. Roy. Meteor. Soc., 140:, 1603-1614, doi: 10.1002/qj.2242
- Okamoto, K., 2013: Assimilation of overcast cloudy infrared radiances of the geostationary MTSAT-1R imager. Quart. J. Roy. Meteor. Soc., 139: 715-730, doi: 10.1002/qj.1994